3,599 research outputs found

    Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    Full text link
    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The Central Kiloparse

    Design verification test matrix development for the STME thrust chamber assembly

    Get PDF
    This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests

    Alloying effects on the optical properties of Ge1x_{1-x}Six_x nanocrystals from TDDFT and comparison with effective-medium theory

    Full text link
    We present the optical spectra of Ge1x_{1-x}Six_x alloy nanocrystals calculated with time-dependent density-functional theory in the adiabatic local-density ap proximation (TDLDA). The spectra change smoothly as a function of the compositio n xx. On the Ge side of the composition range, the lowest excitations at the ab sorption edge are almost pure Kohn-Sham independent-particle HOMO-LUMO transitio ns, while for higher Si contents strong mixing of transitions is found. Within T DLDA the first peak is slightly higher in energy than in earlier independent-par ticle calculations. However, the absorption onset and in particular its composit ion dependence is similar to independent-particle results. Moreover, classical depolarization effects are responsible for a very strong suppression of the abs orption intensity. We show that they can be taken into account in a simpler way using Maxwell-Garnett classical effective-medium theory. Emission spectra are in vestigated by calculating the absorption of excited nanocrystals at their relaxe d geometry. The structural contribution to the Stokes shift is about 0.5 eV. Th e decomposition of the emission spectra in terms of independent-particle transit ions is similar to what is found for absorption. For the emission, very weak tra nsitions are found in Ge-rich clusters well below the strong absorption onset.Comment: submitted to Phys. Rev.

    Design of a neutrino source based on beta beams

    Get PDF
    "Beta Beams" produce collimated pure electron (anti-) neutrino beams by accelerating beta active ions to high energies and having them decay in a race track shaped storage ring of 7 km circumference, the Decay Ring. EUROnu Beta Beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, however, this choice is also constraining the Beta Beams. The isotope pair of choice for the Beta Beam is 6He and 18Ne. However before the EUROnu studies one of the needed isotopes, 18Ne, could not be produced in rates that satisfy the needs for physics reach of the Beta Beam. Therefore, studies of alternative beta emitters, 8Li and 8B, with properties interesting for a Beta Beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the 8Li and 8B isotopes. This Production Ring, the injection Linac and the target system have been evaluated. Measurements of the cross-section of the reactions to produce the Beta Beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the obtained rates of the 8Li and 8B, using the Production Ring for production of 8Li and 8B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the 18Ne isotope has been developed and tested giving good production rates. The baseline presented for the Beta Beam is therefore now to use the 6He and 18Ne isotopes for neutrino production. A 60 GHz ECRIS prototype, the first in the world, was developed and tested with contributions from EUROnu. The Beta Beam has to take into account the modifications of the injectors planned in view of LHC-upgrades. The Decay Ring lattices for the 8Li and 8B have been developed, the lattice for 6He and 18Ne has been optimized also to ensure the high intensity ion beam stability

    Integrated Mission Simulation (IMSim): Multiphase Initialization Design with Late Joiners, Rejoiners and Federation Save & Restore

    Get PDF
    This document describes the design of the Integrated Mission Simulation (IMSim) federate multiphase initialization process. The main goal of multiphase initialization is to allow for data interdependencies during the federate initialization process. IMSim uses the High Level Architecture (HLA) IEEE 1516 [1] to provide the communication and coordination between the distributed parts of the simulation. They are implemented using the Runtime Infrastructure (RTI) from Pitch Technologies AB. This document assumes a basic understanding of IEEE 1516 HLA, and C++ programming. In addition, there are several subtle points in working with IEEE 1516 and the Pitch RTI that need to be understood, which are covered in Appendix A. Please note the C++ code samples shown in this document are for the IEEE 1516-2000 standard

    A study of the Present State of Oyster Statistics in Chesapeake Bay and Suggested Remedial Measure

    Get PDF
    Accurate, detailed and timely information on oyster landings are essential to the efficient management of the oyster resources of Chesapeake Bay. Basic types of i_nformation needed are volumes of oysters harvested on: a) designated public beds; b) unassigned bottoms; and c) leased areas. These data need to be as site specific as possible and include the type of harvest gear. Moreover, it is essential to know the portion of harvest which results from state repletion activities (planted shells or seed) and that part originating from natural production. Price, method of harvest, the buyers and sellers identifi_cation, and other similar data are also needed. However, there are today several major problems in the collections of accurate oyster statistics in the Chesapeake Bay region. Accurate oyster statistics are not being collected. Part of the reason for this is that the data base is oriented toward tax collection rather than the collection of biological statistics about the oyster population.https://scholarworks.wm.edu/vimsbooks/1150/thumbnail.jp

    Event-based knowledge elicitation of operating room management decision-making using scenarios adapted from information systems data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach.</p> <p>Methods</p> <p>A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered.</p> <p>Results</p> <p>Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments.</p> <p>Conclusions</p> <p>Our technical advance is the development and use of automated event-based knowledge elicitation to identify suboptimal OR management decisions that decrease the efficiency of use of OR time. The adapted scenarios can be used in future decision-making.</p

    Final report on effects of low oxygen tensions and high levels of hydrogen sulfide on benthic marine animals

    Get PDF
    This study investigated effects of low levels of dissolved oxygen (D .O.) and low levels of D.O. in combination with hydrogen sulfide (H2S) on the larvae and adults of oysters Crassostra virginica and on adults of hard clams Mercenaria mercenaria. The purpose of this study was to investigate how low D.O. and low D. O. plus H2S, which might be associated with discharges from sewerage treatment plants, could adversely influence populations of molluscs

    Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish.

    Get PDF
    As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes

    Coherent control of indirect excitonic qubits in optically driven quantum dot molecules

    Full text link
    We propose an optoelectronic scheme to define and manipulate an indirect neutral exciton qubit within a quantum dot molecule. We demonstrate coherent dynamics of indirect excitons resilient against decoherence effects, including direct exciton spontaneous recombination. For molecules with large interdot separation, the exciton dressed spectrum yields an often overlooked avoided crossing between spatially indirect exciton states. Effective two level system Hamiltonians are extracted by Feshbach projection over the multilevel exciton configurations. An adiabatic manipulation of the qubit states is devised using time dependent electric field sweeps. The exciton dynamics yields the necessary conditions for qubit initialization and near unitary rotations in the picosecond time scale, driven by the system internal dynamics. Despite the strong influence of laser excitation, charge tunneling, and interdot dipole-dipole interactions, the effective relaxation time of indirect excitons is much longer than the direct exciton spontaneous recombination time, rendering indirect excitons as potential elemental qubits in more complex schemes.Comment: Submitted to PRB, 11 pages and 6 figure
    corecore